

Exercices du chapitre 8

ÉQUATIONS DIFFÉRENTIELLES ET SYSTÈMES DIFFÉRENTIELS

• 000 EXERCICE 1 - RÉSOLUTION D'EDL1

Résoudre les équations différentielles données.

1.
$$y' + 2y = 2$$
, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

2.
$$y' - y = 2$$
, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

3.
$$y' - y = x$$
, d'inconnue $y \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$

4.
$$y' - y = 5x - 4$$
, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

5.
$$y' + y = e^x + x$$
, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

6.
$$y' - y = -2e^{-x}$$
, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

7.
$$y' + y = \frac{1 + x \ln(x)}{x}$$
, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}^+_*, \mathbb{R})$

8.
$$y' - 3y = x$$
, d'inconnue $y \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$

9.
$$y' - 2y = x^2$$
, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

Indication : on cherchera une solution particulière qui soit une fonction polynomiale de degré 2.

10.
$$y' - 4y = e^{2x}$$
, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

11.
$$y'-4y=e^{4x}$$
, d'inconnue $y\in\mathscr{C}^1(\mathbb{R},\mathbb{R})$

Indication : on cherchera une solution particulière sous la forme $x \mapsto P(x)e^{4x}$, avec $P \in \mathbb{R}_1[X]$.

12. $y' + y = 2xe^{-x}$, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

Indication : on cherchera une solution particulière sous la forme $x \longmapsto P(x)e^{-x}$, avec $P \in \mathbb{R}_2[X]$.

• OOO EXERCICE 2 - RÉSOLUTION D'EDL2

Résoudre les équations différentielles données.

1.
$$y'' + y' - 2y = 4$$
, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

2.
$$y'' + y' - 6y = 6x - 1$$
, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

3.
$$y'' - 2y' + y = x$$
, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

Indication : on cherchera une solution particulière qui soit une fonction polynomiale de degré 1.

4. $y'' - 4y' + 3y = x^2$, d'inconnue $y \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$

Indication : on cherchera une solution particulière qui soit une fonction polynomiale de degré 2

5. $y'' - 4y' + 3y = (2x + 1)e^{-x}$, d'inconnue $y \in \mathcal{C}^{1}(\mathbb{R}, \mathbb{R})$

Indication : on cherchera une solution particulière sous la forme $x \mapsto P(x)e^{-x}$, avec $P \in \mathbb{R}_1[X]$.

6. $y'' - 4y' + 3y = (2x + 1)e^x$, d'inconnue $y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$

Indication : on cherchera une solution particulière sous la forme $x \mapsto P(x)e^x$, avec $P \in \mathbb{R}_2[X]$.

•••• EXERCICE 3 - MÉTHODE DE VARIATION DE LA CONSTANTE On considère l'équation différentielle $(E): y'+y=\frac{1}{1+e^x}$, où $y\in\mathscr{C}^1(\mathbb{R},\mathbb{R})$.

- 1. Résoudre y' + y = 0.
- 2. Soit $\lambda \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$, et posons $f: x \longmapsto \lambda(x)e^{-x}$. Établir :

$$(f \text{ est solution de } (E)) \iff (\forall x \in \mathbb{R}, \ \lambda'(x) = \frac{e^x}{1 + e^x})$$

- 3. En déduire une solution particulière de (E).
- 4. Conclure sur l'ensemble des solutions de (E)

•••• EXERCICE 4 - MÉTHODE DE VARIATION DE LA CONSTANTE

On considère l'équation différentielle (E): $y'-y=e^{e^{-x}}$, où $y\in\mathscr{C}^1(\mathbb{R},\mathbb{R})$.

- 1. Résoudre y' y = 0.
- 2. Soit $\lambda \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$, et posons $f: x \longmapsto \lambda(x)e^x$. Déterminer une condition nécessaire et suffisante sur λ' pour que f soit solution de (E).
- 3. En déduire une solution particulière de (E).
- 4. Conclure sur l'ensemble des solutions de (E)

EXERCICE 5 - DE TAILLE 2

On considère le système différentiel :

$$(S) \begin{cases} x' = x + 3y \\ y' = x - y \end{cases}$$

- 1. Trouver les équilibres du système (S)
- 2. Justifier que toutes les trajectoires de (S) ne sont pas convergentes.
- 3. Résoudre le système (S).
- 4. Existe-t-il des trajectoires convergentes? Si oui, en donner une.

•••• EXERCICE 6 - DE TAILLE 2

On considère le système différentiel :

$$(S) \begin{cases} x' = x + y \\ y' = -2x - 2y \end{cases}$$

- 1. Montrer que les trajectoires de (S) sont convergentes.
- 2. Trouver les équilibres de (S).
- 3. Résoudre le système (S).
- 4. Expliciter une trajectoire non constante qui vers vers (-2, -2).

•••• EXERCICE 7 - DE TAILLE 2

On considère le système différentiel :

$$(S) \begin{cases} x' = 3x - y \\ y' = x + y \end{cases}$$

On note $A = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix}$.

- 1. Justifier que A possède une unique valeur propre que l'on déterminera. La matrice A est-elle diagonalisable?
- 2. On pose $P = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}$. Montrer que P est inversible puis calculer P^{-1} .
- 3. Calculer $P^{-1}AP$. On notera T cette matrice.
- 4. Soient $x, y \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$. On note $X = \begin{pmatrix} x \\ y \end{pmatrix}$ et $Y = P^{-1}X$.
 - **4.a.** Démontrer que $Y' = P^{-1}X'$
 - 4.b. En déduire :

$$X' = AX \iff Y' = TY$$

- **4.c.** Résoudre le système Y' = TY.
- **4.d.** Conclure en donnant l'ensemble des solutions de (S).

•••• Exercice 8 - De taille 3

Résoudre le système différentiel suivant :

$$\begin{cases} x' = -2x + y + z \\ y' = x - 2y + z \\ z' = x + y - 2z \end{cases}$$

•••• EXERCICE 9 - ECRICOME 2023 E (SUJET ZÉRO 1)

- 1. Algèbre linéaire. Considérons $A = \begin{pmatrix} 5 & 1 & -4 \\ 3 & 3 & -4 \\ 1 & -1 & 2 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_{3,1}(\mathbb{R})$ canoniquement associé à A.
 - 1.a. Déterminer le rang de f 6id. En déduire une valeur propre de A ainsi que la dimension du sous-espace propre associé.
 - **1.b.** Posons $V = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, ainsi que U = AV 2V et $W = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$
 - **1.b.i.** Montrer que U est vecteur propre de A et déterminer la valeur propre associée.
 - **1.b.ii.** Montrer que (U, V, W) est une base de $\mathcal{M}_{3,1}(\mathbb{R})$.
 - **1.b.iii.** Déterminer la matrice de f dans cette base, notée T.
 - **1.b.iv.** Donner alors une matrice P inversible telle que $A = PTP^{-1}$.
 - 1.c. La matrice A est-elle inversible? Est-elle diagonalisable?
- 2. Système différentiel.

On considère le système différentiel suivant : $\forall t \in \mathbb{R}$, $\begin{cases} x'(t) &= 5x(t) + y(t) - 4z(t) \\ y'(t) &= 3x(t) + 3y(t) - 4z(t) \\ z'(t) &= x(t) - y(t) + 2z(t) \end{cases}$. d'inconnues $x, y, z \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$. On note,

pour tout réel t, $X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$ et on admet que pour tout $t \in \mathbb{R}$, $X'(t) = \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix}$.

- **2.a.** Vérifier que pour tout réel t: X'(t) = AX(t).
- 2.b. On note, pour tout réel t, $Y(t) = P^{-1}X(t)$ et on admet que $Y'(t) = P^{-1}X'(t)$. Montrer que pour tout $t \in \mathbb{R}$: Y'(t) = TY(t).
- 2.c. Soit $c \in \mathbb{R}$. Montrer que la fonction $t \longmapsto cte^{2t}$ est solution de l'équation différentielle $f' = 2f + ce^{2t}$.

- **2.d.** En déduire, pour tout $t \in \mathbb{R}$, l'expression de Y(t) en fonction de t.
- **2.e.** Montrer alors qu'il existe trois réels $\lambda_1, \lambda_2, \lambda_3$ tels que pour tout $t \in \mathbb{R}$:

$$\begin{cases} x(t) = 2(\lambda_1 t + \lambda_1 + \lambda_2)e^{2t} + \lambda_3 e^{6t} \\ y(t) = 2(\lambda_1 t + \lambda_2)e^{2t} + \lambda_3 e^{6t} \\ z(t) = (2\lambda_1 t + \lambda_1 + 2\lambda_2)e^{2t} \end{cases}$$

2.f. En déduire, en notant $x_0 = x(0)$, $y_0 = y(0)$ et $z_0 = z(0)$:

$$\forall t \in \mathbb{R}, \begin{cases} x(t) &= \left((x_0 - y_0)t + z_0 + \frac{1}{2}(x_0 - y_0) \right) e^{2t} + \left(\frac{1}{2}(x_0 + y_0) - z_0 \right) e^{6t} \\ y(t) &= \left((x_0 - y_0)t + z_0 + \frac{1}{2}(y_0 - z_0) \right) e^{2t} + \left(\frac{1}{2}(x_0 + y_0) - z_0 \right) e^{6t} \\ z(t) &= \left((x_0 - y_0)t + z_0 \right) e^{2t} \end{cases}$$

2.g. Que dire si x(0) = y(0)?

•••• EXERCICE 10 - EDL3 HOMOGÈNE À COEFFICIENTS CONSTANTS

On considère le problème de Cauchy suivant :

$$\begin{cases} y''' + 2y'' - y' - 2y = 0 \\ y(0) = y'(0) = 1 ; y''(0) = 0 \end{cases}$$

d'inconnue $y \in \mathscr{C}^3(\mathbb{R}, \mathbb{R})$.

On note, pour tout réel
$$x$$
, $Y(x) = \begin{pmatrix} y(x) \\ y'(x) \\ y''(x) \end{pmatrix}$ et $Y'(x) = \begin{pmatrix} y'(x) \\ y''(x) \\ y'''(x) \end{pmatrix}$.

- 1. Déterminer une matrice A de sorte que pour tout $x \in \mathbb{R}$: Y'(x) = AY(x).
- 2. Diagonalisation de A.
 - **2.a.** Déterminer les réels λ de sorte que $A \lambda I_3$ ne soit pas inversible.
 - 2.b. Pour chaque valeur de λ trouvée à la question précédente, déterminer une base de $\ker(A-\lambda I_3)$. On prendra, si possible, des matrices colonnes dont la première composante vaut 1.
 - 2.c. On note $P = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -1 & 1 \\ 4 & 1 & 1 \end{pmatrix}$. Justifier que P est inversible et déterminer P^{-1} .
 - **2.d.** Calculer $P^{-1}AP$. On notera D la matrice obtenue.
- 3. On pose, pour tout $x \in \mathbb{R}$, $Z(x) = P^{-1}Y(x)$ et $Z'(x) = P^{-1}Y'(x)$. On admet qu'il existe trois fonctions u, v, w, de classe \mathscr{C}^1 sur \mathbb{R} , telles que pour tout réel $x : Z(x) = \begin{pmatrix} u(x) \\ v(x) \\ w(x) \end{pmatrix}$ et $Z'(x) = \begin{pmatrix} u'(x) \\ v'(x) \\ w'(x) \end{pmatrix}$.
 - **3.a.** Déterminer Z(0).
 - **3.b.** Montrer que pour tout $x \in \mathbb{R}$:

$$Y'(x) = AY(x) \iff Z'(x) = DZ(x)$$

- 3.c. Résoudre le système différentiel Z' = DZ.
- 4. Conclure sur le problème de Cauchy initial.

•••• EXERCICE 11 - EDL2 AVEC SYSTÈME DIFFÉRENTIEL

Soient $a,b\in\mathbb{R}$. Redémontrer le théorème concernant les solutions de y''+ay'+by=0 à l'aide des systèmes différentiels.

•••• EXERCICE 12 - ÉQUATION FONCTIONNELLE

L'objectif de l'exercice est de déterminer toutes les fonctions f définies et dérivables sur \mathbb{R} , telles que :

$$\forall x, y \in \mathbb{R}, \ f(x+y) = f(x)f(y) \quad (\star)$$

Procédons par analyse-synthèse.

- 1. Analyse. Considérons f une fonction définie et dérivable sur \mathbb{R} vérifiant la relation (\star) .
 - 1.a. Que dire de f dans le cas où f(0) = 0?

 Dans toute la suite de l'exercice, on supposera que f n'est pas la fonction constante nulle.
 - **1.b.** Déterminer f(0).
 - 1.c. Établir:

$$\forall x \in \mathbb{R}, \ \forall h \in \mathbb{R}^*, \ \frac{f(x+h) - f(x)}{h} = f(x)\frac{f(h) - f(0)}{h}$$

- **1.d.** En déduire une équation différentielle vérifiée par f.
- 1.e. Conclure sur les candidats-solutions.
- 2. Synthèse. Les candidats-solutions sont-elles bien des solutions du problème?
- 3. Conclure.

•••• EXERCICE 13 - ÉQUATION FONCTIONNELLE

L'objectif de l'exercice est de déterminer toutes les fonctions f définies et dérivables sur \mathbb{R} , telles que :

$$\forall x \in \mathbb{R}, \ f'(x)f(-x) = 1 \ ; \ f(0) = -4 \ (\star)$$

Procédons par analyse-synthèse.

- 1. **Analyse.** Considérons f une fonction définie et dérivable sur \mathbb{R} vérifiant les relations (\star) . Posons $g: x \longmapsto f(x)f(-x)$
 - **1.a.** Montrer que q est constante sur \mathbb{R} .
 - **1.b.** En déduire une équation différentielle vérifiée par f.
 - 1.c. Conclure sur les candidats-solutions.
- 2. Synthèse. Les candidats-solutions sont-elles bien des solutions du problème?
- 3. Conclure.

•••• EXERCICE 14 - EDHEC 2023 E

Partie 1. Propriété d'une loi de probabilité

On désigne par c un réel strictement positif et on considère la fonction f définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $f(x) = \begin{cases} \frac{c}{x^{1+c}} & \text{si } x \geq 1 \\ 0 & \text{sinon} \end{cases}$.

- Montrer que f peut être considérer comme une densité.
 On considère dans la suite une variable aléatoire X de densité f et on note F sa fonction de répartition. On dit que X suit la loi de Pareto de paramètre c.
- 2. Déterminer, pour tout $x \in \mathbb{R}$, l'expression de F(x) en fonction de c.
- 3. Soit *t* un réel strictement supérieur à 1.
 - **3.a.** Déterminer, en distinguant les cas $x \ge 1$ et x < 1, la probabilité $\mathbb{P}_{[X > t]}([X \le tx])$.
 - 3.b. En déduire que la loi de $\frac{X}{t}$ conditionnellement à l'évènement [X > t] est la loi de X.

Partie 2. Réciproque de la propriété précédente.

On considère une variable aléatoire Y de densité g nulle sur $]-\infty$; 1[, strictement positive et continue sur $[1;+\infty[$. On pose c=g(1) et on note G la fonction de répartition de Y.

Dans la suite, on suppose que pour tout t > 1:

- $\mathbb{P}([Y > t]) > 0$
- la loi de $\frac{Y}{t}$ conditionnellement à l'évènement [Y > t] est la loi de Y.

On veut alors montrer que Y suit la loi de Pareto de paramètre c.

- **4.** Justifier que G(1) = 0.
- **5. 5.a.** Établir :

$$\forall x \ge 1, \ \forall t > 1, \ G(x) = \frac{G(tx) - G(t)}{1 - G(t)}$$

5.b. Justifier que G est de classe \mathscr{C}^1 sur $]1; +\infty[$ et en déduire :

$$\forall x > 1, \ \forall t > 1, \ G'(x) = \frac{tG'(tx)}{1 - G(t)}$$

5.c. Montrer enfin:

$$\forall t > 1, \ G(t) + \frac{t}{c}G'(t) = 1$$

6. Dans cette question, la lettre y désigne une fonction de classe \mathscr{C}^1 sur]1; $+\infty$ [. On note (E_1) l'équation différentielle $y+\frac{t}{c}y'=0$ et (E_2) l'équation différentielle $y+\frac{t}{c}y'=1$.

Il convient de noter que ces équations différentielles ne sont pas à coefficients constants.

- **6.a.** Soit z la fonction définie par $z(t) = t^c y(t)$. Montrer que y est solution de (E_1) si, et seulement si, z est constante sur $]1; +\infty[$
- **6.b.** En notant K la constante évoquée à la question précédente, donner toutes les solutions de (E_1) .
- **6.c.** Trouver une fonction u, constante sur $]1; +\infty[$, et solution de (E_2) .
- **6.d.** Montrer que y est solution de (E_2) si, et seulement si, y-u est solution de (E_1) .
- **6.e.** En déduire que les solutions de l'équation différentielle (E_2) sont les fonctions y définies par : $\forall t > 1$, $y(t) = 1 + \frac{K}{t^c}$
- 7. 7.a. Montrer finalement que l'on a : $\forall t > 1$, $G(t) = 1 \frac{1}{t^c}$
 - **7.b.** Vérifier que la relation s'étend à $[1; +\infty[$ puis conclure quant à la loi de Y.