

# EXERCICES DU CHAPITRE 1

# Rappels et compléments sur les suites et séries

#### • 000 EXERCICE 1 - RECHERCHE D'ÉQUIVALENTS

Dans chaque cas, déterminer un équivalent simple de  $u_n$  quand n tend vers  $+\infty$ 

1. 
$$\forall n \in \mathbb{N}, \ u_n = n^3 + 3n^2 - 1$$

2. 
$$\forall n \in \mathbb{N}, \ u_n = \frac{n^5 - 3n^2 + 2}{n^8 + n^3 + 1}$$

3. 
$$\forall n \in \mathbb{N}, u_n = \ln(n^2 + 1)$$

4. 
$$\forall n \in \mathbb{N}^*$$
,  $u_n = 2^n \ln(n) + n^2$ 

5. 
$$\forall n \in [3; +\infty[, u_n = n \ln \left(1 - \frac{2}{n}\right) - 2]$$

**6.** 
$$\forall n \in \mathbb{N}, \ u_n = \sqrt{n+1} (\ln(n+1) - \ln(n))$$

#### • OOO EXERCICE 2 - UNE CROISSANCE COMPARÉE

On considère la suite  $(u_n)_{n\in\mathbb{N}^*}$  définie par :  $\forall n\in\mathbb{N}^*,\ u_n=\frac{n!}{n!}$ 

1. Étudier le sens de variation de la suite  $(u_n)_{n\in\mathbb{N}^*}$ .

2. Établir : 
$$\forall n \in \mathbb{N}^*, \ 0 \le u_n \le \frac{1}{n}$$
.

3. En déduire : 
$$n! = o(n^n)$$
.

# •••• EXERCICE 3 - SUITE RÉCURRENTE D'ORDRE 1

On considère la fonction  $f: x \longmapsto \sqrt{x+1}$ , définie sur  $[-1; +\infty[$  ainsi que la suite  $(u_n)_{n\in\mathbb{N}}$  définie par  $: u_0 = 0$  et pour tout  $n \in \mathbb{N}$ ,  $u_{n+1} = \sqrt{u_n + 1}$ .

- 1. Montrer que l'intervalle [0; 2] est stable par f.
- 2. Justifier que si un réel x est point fixe de f, alors nécessairement  $x \ge 0$ . Démontrer que f possède un unique point fixe et le déterminer. On notera r ce point fixe. Vérifier que  $r \in [0; 2]$ .
- 3. 3.a. Justifier que la suite  $(u_n)_{n\in\mathbb{N}}$  est bien définie et bornée par 0 et r.
  - 3.b. Étudier les variations de la suite  $(u_n)_{n\in\mathbb{N}}$ . Que peut-on en déduire?
  - 3.c. Montrer:  $\forall n \in \mathbb{N}, \ |u_{n+1} r| \le \frac{1}{2} |u_n r|$ . En déduire:  $\forall n \in \mathbb{N}, \ |u_n r| \le \frac{1}{2^{n-1}}$ .
  - 3.d. Déterminer alors la limite de la suite  $(u_n)_{n\in\mathbb{N}}$  ainsi qu'un entier N tel que  $|u_N-r|\leq 10^{-9}$ .

#### • 000 EXERCICE 4 - Suite récurrente d'ordre 1

Étudier l'existence de la limite et, le cas échéant la déterminer, de la suite  $(u_n)_{n\in\mathbb{N}}$  définie par  $u_0=0$  et pour tout  $n\in\mathbb{N}$ ,  $u_{n+1}=\sqrt{u_n^2+1}$ .

# •••• EXERCICE 5 - DÉVELOPPEMENT ASYMPTOTIQUE D'UNE SUITE

On considère la suite  $(u_n)_{n\in\mathbb{N}}$  définie par  $u_0=1$  et pour tout  $n\in\mathbb{N}$ ,  $u_{n+1}=\frac{1}{u_n+n+1}$ 

- 1. Écrire une fonction **Python** prenant en argument d'entrée un entier naturel n et renvoyant la valeur de  $u_n$ .
- 2. Démontrer que la suite  $(u_n)_{n\in\mathbb{N}}$  est bien définie et à termes strictement positifs.
- 3. Établir :  $\forall n \in \mathbb{N}^*$ ,  $u_n \leq \frac{1}{n}$ . En déduire la limite de la suite  $(u_n)_{n \in \mathbb{N}}$ .
- 4. Déterminer  $\lim_{n\to +\infty} nu_n$ . En déduire un équivalent de  $u_n$  quand n tend vers  $+\infty$ .

5. **5.a.** Démontrer : 
$$\lim_{n \to +\infty} n^3 \left( u_n - \frac{1}{n} \right) = -1.$$

**5.b.** En déduire : 
$$u_n = \frac{1}{n} - \frac{1}{n^3} + o_{n \to +\infty} \left( \frac{1}{n^3} \right)$$
.

# •ooo Exercice 6

On note, pour tout  $n \in \mathbb{N}$ ,  $S_n = \sum_{k=0}^n \frac{1}{e^k + e^{-k}}$ .

1. Établir la convergence de la suite  $(S_n)_{n\in\mathbb{N}}$ . On note S sa limite.

2. Justifier : 
$$\forall n \in \mathbb{N}, \ \frac{1}{e^n + e^{-n}} \le e^{-n}$$

3. En déduire : 
$$\frac{1}{2} \le S \le \frac{e}{e-1}$$

# •••• EXERCICE 7 - Suite d'INTÉGRALES

Pour tout  $n \in \mathbb{N}$ , on pose  $I_n = \int_0^1 x^n e^{-x} dx$ .

- 1. Justifier que la suite  $(I_n)_{n\in\mathbb{N}}$  est bien définie
- 2. Étudier les variations de la suite  $(I_n)_{n \in \mathbb{N}}$ .
- 3. Démontrer que la suite  $(I_n)_{n\in\mathbb{N}}$  converge et déterminer la valeur de sa limite.
- 4. Démontrer :  $\forall n \in \mathbb{N}, \ I_{n+1} = (n+1)I_n e^{-1}$ .
- 5. En déduire :  $\forall n \in \mathbb{N}$ ,  $0 \le I_n \frac{\mathrm{e}^{-1}}{n+1} \le \frac{1}{(n+1)(n+2)}$ . Trouver alors un équivalent simple de  $I_n$  quand n tend vers  $+\infty$ .
- 6. Écrire une fonction Python prenant en argument d'entrée un entier naturel n et renvoyant la valeur de  $I_n$ .

•••• EXERCICE 8 - Suite d'intégrales
Pour tout  $n \in \mathbb{N}$ , on pose  $I_n = \int_0^1 \frac{x^n}{1+x^n} dx$  et  $J_n = nI_n$ .

- 1. Déterminer  $\lim_{n\to+\infty} I_n$ .
- 2. Démontrer que pour tout  $n \in \mathbb{N}$ ,  $J_n = \ln(2) \int_0^1 \ln(1+x^n) dx$ .
- 3. Établir :  $\lim_{n \to +\infty} \int_{0}^{1} \ln(1+x^{n}) dx = 0.$
- 4. En déduire la limite de  $(J_n)_{n\in\mathbb{N}}$  puis un équivalent de  $I_n$  lorsque n tend vers  $+\infty$

### • OOO EXERCICE Q - CONVERGENCE ET SOMME DE SÉRIES

Justifier la convergence et déterminer les sommes des séries suivantes :

1. 
$$\sum_{n\geq 0} \frac{2^{n-1}}{n!}$$

2. 
$$\sum_{n>0}^{\infty} \frac{n}{2^{2n}}$$

3. 
$$\sum_{n\geq 0} \frac{n^2}{3^n}$$

4. 
$$\sum_{n>2} \ln \left(1 - \frac{1}{n^2}\right)$$

5. 
$$\sum_{n\geq 1} \frac{1}{n(n+1)}$$

6. 
$$\sum_{n>2} \frac{1}{n^2-1}$$

# • 000 EXERCICE 10 - NATURE DE SÉRIES

Étudier la nature des séries suivantes :

1. 
$$\sum_{n>1} \frac{\ln(n)}{n}$$

$$2. \sum_{n \ge 0} \frac{1}{n^2 + 3n + 1}$$

3. 
$$\sum_{n \ge 0} \frac{2n^3 - 3n + 2}{n^4 + 5n^2 + 3n + 1}$$

4. 
$$\sum_{n>1} \frac{1}{n2^n}$$

5. 
$$\sum_{n>0} \frac{1}{e^n + e^{-n}}$$

6. 
$$\sum_{n>1} \ln \left(1 + \frac{1}{n}\right)$$

7. 
$$\sum_{n>0} \frac{(-1)^n}{n^3+3n+1}$$

8. 
$$\sum_{n>0} \frac{n!}{2^n}$$

9. 
$$\sum_{n > 0} e^{-\sqrt{n}}$$

8. 
$$\sum_{n\geq 0} \frac{n!}{2^n}$$
9. 
$$\sum_{n\geq 0} e^{-\sqrt{n}}$$
10. 
$$\sum_{n\geq 0} \frac{n}{3^n + n^2}$$

11. 
$$\sum_{n\geq 1} \frac{1}{n^n}$$

12. 
$$\sum_{n>1} \frac{\ln(n)}{n^2}$$

#### •••• EXERCICE 11 - VRAI OU FAUX?

- 1. Si deux suites ont même limite, alors elles sont équivalentes.
- 2. Si  $(u_n)_{n\in\mathbb{N}}$  est une suite de réels positifs, alors les séries  $\sum_{n\geq 0}u_n$  et  $\sum_{n\geq 0}\ln(1+u_n)$  ont même nature.
- 3. Soient  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  deux suites à termes positifs tels que  $u_n = \underbrace{o}_{n\to+\infty}(v_n)$ . Si  $\sum u_n$  est convergente, alors  $\sum v_n$  également.
- 4. Soient  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  deux suites à termes positifs tels que  $u_n = \underset{n\to+\infty}{o}(v_n)$ . Si  $\sum v_n$  est divergente, alors  $\sum u_n$  également.
- 5. Si  $u_{n+1} \underset{n \to +\infty}{\sim} u_n$ , alors  $(u_n)_{n \in \mathbb{N}}$  converge
- **6.** Si  $(u_n)_{n\in\mathbb{N}}$  converge, alors  $u_{n+1} \underset{n\to+\infty}{\sim} u_n$
- 7. Si  $(u_n)_{n\in\mathbb{N}}$  une suite telle que :  $\forall n\in\mathbb{N}^*$ ,  $\frac{1}{n}\leq u_n\leq\frac{2}{n}$ , alors il existe un réel  $a\in[1;2]$  tel que  $u_n\underset{n\to+\infty}{\sim}\frac{a}{n}$

# •••• EXERCICE 12 - ESC 2001 E

On considère la fonction f définie sur [0; 1] par :  $\forall x \in [0; 1], \ f(x) = 2xe^x$ .

- 1. Montrer que f réalise une bijection de [0;1] sur un ensemble que l'on déterminera. Donner le tableau de variations de  $f^{-1}$ .
- 2. Vérifier qu'il existe dans [0; 1] un et un seul réel noté  $\alpha$  tel que  $\alpha e^{\alpha} = 1$ . Montrer que  $\alpha \neq 0$ .

On définit la suite  $(u_n)_{n\in\mathbb{N}}$  par :  $\left\{\begin{array}{l} u_0=\alpha\\ \forall n\in\mathbb{N},\ u_{n+1}=f^{-1}(u_n) \end{array}\right.$ 

- 3. Montrer que pour tout  $n \in \mathbb{N}$ ,  $u_n$  existe et  $u_n \in ]0;1]$ .
- 4. 4.a. Montrer que pour tout réel x de [0;1],  $f(x)-x\geq 0$ ; et qu'il y a égalité seulement pour x=0.
  - **4.b.** En déduire que la suite  $(u_n)_{n\in\mathbb{N}}$  est strictement décroissante.
  - 4.c. Montrer que la suite  $(u_n)_{n\in\mathbb{N}}$  est convergente et préciser la valeur de sa limite.
- 5. On se propose de déterminer un équivalent de la suite  $(u_n)_{n\in\mathbb{N}}$ . On pose, pour tout  $n\in\mathbb{N}$ ,  $S_n=\sum_{k=0}^nu_k$ .
  - **5.a.** Montrer que pour tout entier naturel n,  $u_{n+1} = \frac{1}{2}u_n e^{-u_{n+1}}$ .
  - **5.b.** Établir alors :  $\forall n \in \mathbb{N}, \ u_n = \frac{e^{-S_n}}{2^n}$ .
  - 5.c. En déduire la convergence de la série  $\sum_{n\geq 0} u_n$ . On note S sa somme. Établir :  $\alpha\leq S\leq 2$ .
  - **5.d.** Démontrer finalement :  $u_n \underset{n \to +\infty}{\sim} \frac{e^{-S}}{2^n}$ .

# •••• EXERCICE 13 - EDHEC 2016 E

Pour chaque entier naturel n, on définit la fonction  $f_n$  par :  $\forall x \in [n, +\infty[, f_n(x)] = \int_0^x e^{\sqrt{t}} dt$ .

- 1. Étude de  $f_n$ .
  - **1.a.** Montrer que  $f_n$  est de classe  $\mathscr{C}^1$  sur  $[n, +\infty[$  puis déterminer  $f'_n(x)$  pour tout x de  $[n, +\infty[$ . Donner le sens de variation de  $f_n$ .
  - **1.b.** En minorant  $f_n(x)$ , établir que  $\lim_{x \to +\infty} f_n(x) = +\infty$ .
  - 1.c. En déduire que pour chaque entier naturel n, il existe un unique réel, noté  $u_n$ , élément de  $[n, +\infty[$ , tel que  $f_n(u_n) = 1$ .
- 2. Étude de la suite  $(u_n)$ .
  - **2.a.** Montrer que  $\lim_{n \to +\infty} u_n = +\infty$ .
  - 2.b. Montrer que :  $\forall n \in \mathbb{N}$ ,  $e^{-\sqrt{u_n}} \le u_n n \le e^{-\sqrt{n}}$ .
- 3. Écrire un programme dont l'exécution affiche un entier naturel n pour lequel  $u_n n \le 10^{-4}$ .
- **4.** On pose, pour tout  $n \in \mathbb{N}$ ,  $v_n = u_n n$ .
  - **4.a.** Montrer que  $\lim_{n\to+\infty} v_n = 0$ .
  - **4.b.** Établir que, pour tout réel x supérieur ou égal à -1, on a :  $\sqrt{1+x} \le 1 + \frac{x}{2}$
  - $\text{4.c.} \quad \text{V\'erifier ensuite que}: \forall n \in \mathbb{N}^*, \ \mathrm{e}^{-\sqrt{u_n}} \geq \mathrm{e}^{-\sqrt{n}} \exp{\left(-\frac{v_n}{2\sqrt{n}}\right)}.$
  - **4.d.** Déduire de l'encadrement obtenu en 2.b. que :  $u_n n \underset{n \to +\infty}{\sim} e^{-\sqrt{n}}$ .

# •••• EXERCICE 14 - EML 2019 E

On considère la fonction f définie sur  $]0, +\infty[$  par :

$$\forall t \in ]0, +\infty[, f(t) = t + \frac{1}{t}]$$

#### PARTIE A : Étude d'une fonction d'une variable

- 1. Dresser le tableau de variations de f en précisant les limites en 0 et  $+\infty$ .
- 2. Montrer que f réalise une bijection de  $[1, +\infty]$  vers  $[2, +\infty]$

On note  $g:[2,+\infty[\to[1,+\infty[$  la bijection réciproque de la restriction de f à  $[1,+\infty[$ .

- 3. 3.a. Dresser le tableau de variations de qu
  - **3.b.** Justifier que la fonction g est dérivable sur  $[2, +\infty[$ .
  - 3.c. Soit  $y \in [2, +\infty[$ . Déterminer une expression de g(y) en fonction de y.

### PARTIE B : ÉTUDE D'UNE SUITE

On introduit la suite  $(u_n)_{n\in\mathbb{N}^*}$  définie par :

$$u_1 = 1$$
 et  $\forall n \in \mathbb{N}^*$ ,  $u_{n+1} = u_n + \frac{1}{n^2 u_n} = \frac{1}{n} f(nu_n)$ 

- **4.** Montrer que, pour tout n de  $\mathbb{N}^*$ ,  $u_n$  existe et  $u_n \geq 1$ .
- 5. Écrire une fonction Python prenant en argument d'entrée un entier naturel non nul n et renvoyant en sortie la valeur de $u_n$ .
- **6**. On pose, pour tout n de  $\mathbb{N}^*$ ,  $v_n = u_{n+1} u_n$ .
  - **6.a.** Montrer:  $\forall n \in \mathbb{N}^*, 0 \le v_n \le \frac{1}{n^2}$
  - **6.b.** En déduire la nature de la série  $\sum v_n$ .
  - **6.c.** Calculer, pour tout *n* supérieur ou égal à 2,  $\sum_{k=1}^{n-1} v_k$

En déduire que la suite  $(u_n)_{n\in\mathbb{N}^*}$  converge vers un réel  $\ell$ , que l'on ne cherchera pas à déterminer.

- **7. 7.a.** Montrer que, pour tout entier k supérieur ou égal à 2, on  $a: \frac{1}{k^2} \le \int_{t-1}^k \frac{1}{t^2} dt$ .
  - **7.b.** Pour tous entiers n et p tels que  $2 \le p < n$ , calculer  $\sum_{k=p}^{n-1} v_k$  et en déduire :  $0 \le u_n u_p \le \int_{p-1}^{n-1} \frac{1}{t^2} dt$ .
  - En déduire, pour tout entier n supérieur ou égal à  $3:u_2\leq u_n\leq 1+u_2$ Montrer alors que  $\ell$  appartient à l'intervalle [2, 3].
  - **7.d.** Montrer, pour tout entier *p* supérieur ou égal à 2 :

$$0 \le \ell - u_p \le \frac{1}{p-1}$$

7.e. En déduire une fonction Python qui renvoie une valeur approchée de  $\ell$  à  $10^{-4}$  près

# •••• EXERCICE 15 - ESC 2006 E

On considère la fonction g définie ur  $\mathbb{R}$  par :  $\forall x \in \mathbb{R}$ ,  $g(x) = e^x - x$ .

- 1. Dresser le tableau de variations de q en précisant ses limites en  $\pm \infty$ .
- 2. Montrer que pour tout  $n \in [2; +\infty[$ , l'équation g(x) = n possède exactement deux solutions, l'une strictement négative notée  $\alpha_n$  et l'autre strictement positive notée  $\beta_n$
- 3. Approximation de  $\alpha_2$ . On considère la suite  $(u_n)_{n\in\mathbb{N}}$  définie par :  $\begin{cases} u_0 = -1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \mathrm{e}^{u_n} 2 \end{cases}$ 
  - **3.a.** Établir :  $-2 \le \alpha_2 \le -1$ .
  - **3.b.** Justifier que  $e^{\alpha_2} 2 = \alpha_2$  puis démontrer :  $\forall n \in \mathbb{N}, \ \alpha_2 \le u_n \le -1$ .
  - 3.c. En utilisant l'inégalité des accroissements finis avec une fonction adéquate, démontrer que pour tous réels a, b tels que  $a \leq b \leq -1$ , on a :  $0 \le e^b - e^a \le \frac{1}{2}(b - a)$ .
  - 3.d. Montrer que pour tout  $n \in \mathbb{N}$ ,  $u_{n+1} \alpha_2 = \mathrm{e}^{u_n} \mathrm{e}^{\alpha_2}$ . En déduire :  $\forall n \in \mathbb{N}$ ,  $0 \le u_n \alpha_2 \le \left(\frac{1}{n}\right)^n$ .
  - **3.e.** Démontrer alors que la suite  $(u_n)_{n\in\mathbb{N}}$  converge vers  $\alpha_2$ .
  - 3.f. Écrire un programme **Python** permettant d'obtenir une valeur approchée de  $\alpha_2$  à  $10^{-5}$  près.
- 4. Étude des suites  $(\alpha_n)_{n\geq 2}$  et  $(\beta_n)_{n\geq 2}$ .
  - **4.a.** Étudier les variations des suites  $(\alpha_n)_{n\geq 2}$  et  $(\beta_n)_{n\geq 2}$  et déterminer leur limite en  $+\infty$ .
  - **4.b.** Établir:  $\forall n \in [2; +\infty[$ ,  $-n \le \alpha_n \le -n + 1$ . En déduire un équivalent de  $\alpha_n$  lorsque n tend vers  $+\infty$ .
  - 4.c. Soit  $n \in [2; +\infty[$ . Démontrer :  $1 \le g(\ln(n)) \le n$ . En déduire :  $g(\ln(2n)) \ge n$ .
  - **4.d.** En déduire :  $\forall n \in [2; +\infty[$ ,  $\ln(n) \le \beta_n \le \ln(2n)$  puis déterminer un équivalent simple de  $\beta_n$  lorsque n tend vers  $+\infty$ .

## •••• EXERCICE 16 - EDHEC 1997 E

Soit p un entier naturel fixé. Pour tout entier naturel n, on pose  $u_n = \frac{1}{\binom{n+p}{n}}$ 

1. Montrer que si  $p \in \{0, 1\}$ , alors la série de terme général  $u_n$  diverge.

Dans la suite, on suppose que  $p \ge 2$  et on note, pour tout  $n \in \mathbb{N}$ ,  $S_n = \sum_{k=1}^n u_k$ .

- 2. 2.a. Montrer:  $\forall n \in \mathbb{N}^*$ ,  $(n+p+1)u_{n+1} = (n+1)u_n$ . 2.b. En déduire:  $\forall n \in \mathbb{N}$ ,  $S_n = 1 + \frac{1}{p-1} (1 (n+p+1)u_{n+1})$ .
- 3. On pose, pour tout  $n \in \mathbb{N}$ ,  $v_n = (n+p)u_n$ 
  - **3.a.** Montrer que la suite  $(v_n)_{n\in\mathbb{N}}$  est décroissante.
  - **3.b.** En déduire que la suite  $(v_n)_{n\in\mathbb{N}}$  converge vers un réel  $\ell$  positif ou nul.

- 3.c. Montrer que la série de terme général  $u_n$  converge et donner sa somme fonction de p et  $\ell$ .
- 4. On suppose, dans cette question seulement, que  $\ell \neq 0$ .
  - **4.a.** Établir :  $u_n \sim \frac{\epsilon}{n \to +\infty} \frac{\epsilon}{n}$
  - 4.b. En déduire une contradiction avec la question 3..
- 5. Conclure sur la valeur de  $\ell$  et exprimer simplement  $\sum_{n=1}^{\infty} u_n$  en fonction de p.

# EXERCICE 17 - EDHEC 1997 E

Pour tout entier naturel non nul n, on note  $f_n$  la fonction définie sur  $\mathbb{R}^+_*$  par :  $\forall x \in \mathbb{R}^+_*$ ,  $f_n(x) = x - n \ln(x)$ .

- **1. 1.a.** Soit  $n \in \mathbb{N}^*$ . Dresser le tableau de variations complet de  $f_n$  sur  $\mathbb{R}^+_*$ .
  - 1.b. En déduire, lorsque  $n \in [3; +\infty[$ , l'existence de deux réels  $u_n$  et  $v_n$  solutions de l'équation  $f_n(x) = 0$  tels que  $0 < u_n < n < v_n$ .
- 2. A l'aide de la méthode de dichotomie, écrire une fonction Python telle que, pour tout  $n \in [3; +\infty]$ , l'exécution de approx\_u(n) renvoie une valeur approchée de  $u_n$  à  $10^{-3}$  près.
- 3. Étude de la suite  $(u_n)_{n\geq 3}$ .
  - **3.a.** Montrer que pour tout  $n \in [3; +\infty]$ ,  $1 < u_n < e$ .
  - 3.b. Montrer que pour tout  $n \in [3; +\infty[$ ,  $f_n(u_{n+1}) = \ln(u_{n+1})$ , puis en conclure que la suite  $(u_n)_{n\geq 3}$  est décroissante.
  - 3.c. En déduire que  $(u_n)_{n\geq 3}$  converge et montrer, en encadrant  $\ln(u_n)$ , que  $\lim_{n\to\infty}u_n=1$ .
  - 3.d. Montrer que  $\lim_{n\to+\infty}\frac{\ln(u_n)}{u_n-1}=1$ . En déduire que  $u_n-1 \underset{n\to+\infty}{\sim} \frac{1}{n}$
- 4. Étude de la suite  $(v_n)_{n>3}$ 
  - **4.a.** Justifier que la suite  $(v_n)_{n>3}$  diverge vers  $+\infty$ .
  - **4.b.** Soit  $n \in [3; +\infty[$ . Calculer  $f_n(n \ln(n))$  puis montrer que  $n \ln(n) < v_n$ .
  - **4.c.** Démontrer :  $\forall n \in \mathbb{N}^*, n > 2 \ln(n)$ .
  - **4.d.** En déduire :  $\forall n \in [3; +\infty[$ ,  $n \ln(n) < v_n < 2n \ln(n)$ .
  - **4.e.** Montrer enfin :  $\ln(v_n) \sim n \ln(n)$ .

# EXERCICE 18 - EDHEC 1998 E

On considère la fonction f définie sur  $\mathbb{R}$  par :  $\forall x \in \mathbb{R}$ ,  $f(x) = 1 - e^{-x}$ 

- 1. Résultats sur la fonction f.
  - **1.a.** Dresser le tableau de variations de f sur  $\mathbb{R}$
  - **1.b.** Montrer:  $\forall x \in \mathbb{R}$ ,  $f(x) \le x$ , l'égalité n'ayant lieu que pour x = 0.
  - Démontrer :

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ e^{-x} = \sum_{k=0}^{n} \frac{(-x)^k}{k!} + (-1)^{n+1} \int_0^x \frac{(x-t)^n}{n!} e^{-t} dt$$

**1.d.** En écrivant l'égalité précédente pour n=2 puis pour n=3, établir l'encadrement :

$$\forall x \in \mathbb{R}^+, \ \frac{x^2}{2} - \frac{x^3}{6} \le x - f(x) \le \frac{x^2}{2}$$

#### Étude d'une suite.

2.a. Soit  $(u_n)_{n\in\mathbb{N}}$  une suite. Montrer que la suite  $(u_n)_{n\in\mathbb{N}}$  converge si, et seulement si, la série  $\sum_{n\geq 0} (u_{n+1}-u_n)$  est convergente.

On considère la suite  $(u_n)_{n\in\mathbb{N}}$  définie par  $u_0=1$  et pour tout  $n\in\mathbb{N}$ ,  $u_{n+1}=1-e^{-u_n}$ 

- **2.b.** Montrer que la suite  $(u_n)_{n\in\mathbb{N}}$  est bornée par 0 et 1.
- 2.c. A l'aide des la question 1.b., montrer que la suite  $(u_n)_{n\in\mathbb{N}}$  est convergente puis préciser sa limite.
- **2.d.** En déduire la nature de la série de terme général  $u_{n+1} u_n$
- 2.e. En utilisant la question 1.d., démontrer :  $u_{n+1} u_n \approx \frac{u_n^2}{2}$
- 2.f. Conclure quant à la nature de la série de terme général  $u_n^2$

#### 3. Étude d'une fonction définie par une intégrale.

On note  $\phi$  la fonction définie sur  $\mathbb{R}^+$  par :  $\phi(0)=1$  et, pour tout  $x\in\mathbb{R}^+_*$ ,  $\phi(x)=\frac{f(x)}{x}$ .

On note également g la fonction définie sur  $\mathbb{R}^+$  par : g(0)=1 et, pour tout  $x\in\mathbb{R}^+_*$ ,  $g(x)=\frac{1}{x}\int_0^x\phi(t)dt$ .

- **3.a.** Montrer que  $\phi$  est continue sur  $\mathbb{R}^+$
- **3.b.** Vérifier que g est bien définie et continue sur  $\mathbb{R}^+_*$
- 3.c. 3.c.i. Montrer :  $\forall x \in \mathbb{R}^+_*$ ,  $1 \frac{x}{4} \le g(x) \le 1 \frac{x}{4} + \frac{x^2}{18}$ . 3.c.ii. En déduire que g est continue en 0, dérivable en 0 puis donner g'(0).
- 3.d. 3.d.i. Établir :  $\forall x \in ]1; +\infty[, \int \phi(t)dt \le \ln(x).$

- 3.d.ii. En déduire que g possède une limite finie en  $+\infty$  et donner la valeur de cette limite.
- 3.e. 3.e.i. Pour tout réel strictement positif x, calculer g'(x) et l'écrire sous la forme  $g'(x) = \frac{h(x)}{x^2}$ 
  - 3.e.ii. Dresser le tableau de variations de q et tracer l'allure de sa courbe représentative dans un repère orthonormé.

# •••• EXERCICE 19 - TSSA et série alternée

- 1. Soit  $(u_n)_{n\in\mathbb{N}}$  une suite décroissante de limite nulle. Pour  $N\in\mathbb{N}$ , on pose  $S_N=\sum_{n=0}^N (-1)^n u_n$ .
  - **1.a.** Justifier que pour tout  $n \in \mathbb{N}$ ,  $u_n \ge 0$ .
  - **1.b.** Démontrer que les suites  $(S_{2N})_{n\in\mathbb{N}}$  et  $(S_{2N+1})_{n\in\mathbb{N}}$  sont adjacentes.
  - 1.c. En déduire que la série  $\sum (-1)^n u_n$  est convergente.
- 2. Établir la convergence de la série  $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n}}$
- 3. Donner un équivalent simple de  $\frac{(-1)^n}{\sqrt{n} + (-1)^n}$  quand n tend vers  $+\infty$ .
- 4. Soit  $(u_n)_{n\in\mathbb{N}}$  une suite qui converge vers 0. Établir :

$$\frac{1}{1+u_n} = 1 - u_n + u_n^2 + \underset{n \to +\infty}{o} (u_n^2)$$

En déduire :

$$\frac{(-1)^n}{\sqrt{n} + (-1)^n} = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + \frac{(-1)^n}{n\sqrt{n}} + \underset{n \to +\infty}{o} \left(\frac{1}{n\sqrt{n}}\right)$$

- 5. Étudier alors la nature de la série  $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$
- 6. Qu'a permis de mettre en évidence cet exercice?

# •••• EXERCICE 20 - Comparaison série / Intégrale Soit $\alpha \in ]0;1[$ .

- 1. Quelle est la nature de la série  $\sum_{k>\alpha} \frac{1}{k^{\alpha}}$ ?
- 2. Pour tout  $n \in \mathbb{N}^*$ , on pose  $S_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$ 
  - 2.a. Établir :

$$\forall n \in \mathbb{N}^*, \ S_{n+1} - 1 \le \frac{1}{1 - \alpha} - \frac{(n+1)^{1-\alpha}}{1 - \alpha} \le S_n$$

2.b. En déduire :  $\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \sim_{n \to +\infty} \frac{n^{1-\alpha}}{1-\alpha}$ 

#### •••• EXERCICE 21 - Type oral

- 1. Critères de comparaison sur les séries à terme général positif.
- 2. Soit  $x \in [0; +\infty[$ . Établir la convergence de la série  $\sum_{k \ge 0} \frac{1}{2^k + x}$ . On notera f(x) sa somme.
- 3. Calculer f(0).
- 4. Étudier les variations de la fonction f ainsi définie sur  $[0; +\infty]$ .
- 5. Établir :  $\forall x \in [0; +\infty[, f(2x) = \frac{1}{2}f(x) + \frac{1}{2x+1}]$
- 6. Déduire des deux questions précédentes que f possède une limite en  $+\infty$  et la déterminer.
- 7. 7.a. Montrer que pour tous réels positifs x et y, on a :  $|f(x) f(y)| \le \frac{4}{3}|x y|$ .
  - **7.b.** En déduire que f est continue sur  $[0; +\infty[$